Roll No \qquad

BE-3001 (EE/EX)-CBGS

B.E., III Semester

Examination, December 2020

Choice Based Grading System (CBGS)

Mathematics - III
Time : Three Hours
Maximum Marks : 70
Note: i) Attempt any five questions.
ii) All questions carry equal marks.

1. a) Express the function $f(x)=x \sin x$, as a Fourier series in $-\pi \leq x \leq \pi$. Hence deduce that

b) Findene Fourier sine transform of $f(x)=e^{a x} / x$. 5
c) Grate and prove Linearity property of Fourier transform.
2. a) Solve the integral equation

$$
\begin{align*}
& \int_{0}^{\infty} f(x) \cos s x d x=\left\{\begin{array}{cc}
1-s, & 0 \leq s \leq 1 \\
0, & s>1
\end{array}\right. \\
& \text { Hence prove that } \int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t=\frac{\pi}{2} \tag{7}
\end{align*}
$$

b) Find the Laplace transform of $\frac{1-\cos t}{t^{2}}$
3. a) Find the inverse Laplace transform of $\frac{1}{S^{4}+4}$
b) If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ and $f(z)=u+i v$ is an analytic function of z. Find $f(z)$.
4. a) Evaluate $\int_{c} \frac{z^{2}+1}{z^{2}-1} d z$ where C is
i) $|z|=3 / 2$
ii) $|z|=1 / 2$
iii) $|z-1|=1$
b) If the directignal derivative of $\varphi=a x^{2} y+b y^{2} z+c z^{2} x$ at the point $(1,1,1)$ has maximum magnitude 15 in the dir $\frac{x}{} \frac{x-1}{2}=\frac{y-3}{-2}=\frac{z}{1}$, find a, b and c .
5. a) Evaluate surface integral $\int \hat{f}$.n ds, where

CF $=\left(x^{2}+y^{2}+z^{2}\right)(\hat{i}+\hat{j}+\hat{k})$, S is the surface of the tetrahedron $x=0, y=0, z=0, x+y+z=2$ anôl is the unit normal in the outward direction to the closed surface S.
b) Find the Fourier series for $f(x)=\left\{\begin{array}{cc}-\pi & -\pi<x<0 \\ x & 0<x<\pi\end{array}\right.$ Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+=\frac{\pi^{2}}{8}$
6. a) A periodic function of period 4 is defined as $f(x)=|x|,-2<x<2$. Find its Fourier series expansion.

7
b) Find the Fourier cosine transform of $\frac{1}{1+x^{2}}$. 7
7. a) Find the Fourier sine transform of $\frac{1}{x}$.
b) State and prove modulation property of Fourier transform.
c) Solve $y\left(y^{\prime}+2 y^{\prime}+5 y=e^{-x} \sin x\right.$ where $y(0)=0, y^{\prime}(0)=1$ by

Latace transform method.
8. a) Use convolution theorem to find $L^{-1}\left[\frac{1}{\left(s^{2}+a^{2}\right)^{2}}\right]$
b) Evaluate $\int_{-\infty}^{\infty} \frac{x \sin \pi x}{x^{2}+2 x+5} d x$ by contour integration.

7

